
 ISSN(Online) : 2456-8910

International Journal of Innovative Research in Applied Sciences and Engineering (IJIRASE)
 Volume 4, Issue 3, DOI: 10.29027/IJIRASE.v4.i3.2020.664-668, September 2020

 Vol. 4 (3), September 2020, www.ijirase.com 664

Machine Learning Based Solution for Detecting Malware Android

Applications
A.S.Sharan 1, Dr. K.R.Radhika2

Department. of ISE, B.M.S College of Engineering, Bengaluru, under VTU, Belagavi, India
Email : sharansrinivas833@gmail.com

Abstract— Smartphone usage has increased rigorously. Android is one of the most used operating systems in

various smartphone worldwide. It is open-source and has chances of installing third-party applications
without permission. Android is the most vulnerable operating system for a malware attack. This is a big threat
to cyber security. In this paper, we make a dynamic analysis using android network traffic logs. We propose
an ensemble modelled approach called XGBoost to detect malware and benign applications using the traffic.
The proposed model is providing the accuracy of 92.28% and a Kappa coefficient of 0.83. Finally, some of
the good set of features from android applications are outlined that helps us to label them as malware and
benign. The proposed model is tested across various metrics and they are providing promising results.

Keywords— Android, Malware, Benign, Ensemble Model, XGBoost, Kappa co-efficient, Detection

I. INTRODUCTION

In modern days, smartphones are an essential commodity
of life. There many numbers of mobile applications
providing various facilities to users. These mobile
applications are installed on smartphones. The smartphones
contain various numbers of sensors that are used by many of
the applications that create a large number of complex data
[8,12]. From 2008, an android made its place with the users
due to its user-friendly features in applications. Android has
access to user’s information. The leakage of these data
destroys the user’s android privacy. Hence attackers are
interested in these data. So, they are spreading Malware
applications in the android market.

According to the survey made by Kaspersky labs, 80 %
of the smartphones uses android as their operating system.
One million malware attacks on android devices were
recorded in 2019. Malware is the program that disrupts the
system operations and stores the users personal and financial
information. In the Android platform, to overcome malware
application it asks permission from the users while installing
[11]. Permissions are offered on its personal because both
malicious and benign requires the same set of permissions.
Hence this is an ineffective way to detect a malicious
application. A Framework must be created to classify
malicious and benign applications This can be done by
anyone of the two methods.

 Static Analysis: It is a quick and inexpensive way to
detect malware application by analysing the code. They
analyse the variable usage, API calls, code sequences and
statements. They can classify the application into malicious
or benign without executing the application.

Dynamic Analysis: It is an effective way to detect
malicious or benign application by executing the applications
in a controlled manner and watching its behaviour. Sandbox
is commonly used for dynamic analysis.

 We use dynamic analysis because of its efficiency.
During the execution of any applications, few features will
be recorded. All response and requests are recorded. This log
is used to label the application into benign and malware.

A. Working Procedure and Organization of paper

Initially, we shape the dataset and remove all the

outliers. Outliers are the numbers which are at the abnormal
position other than the normal values. Then the data is

normalized and standardized. Now the dataset is divided for

training a testing part. The algorithm is trained and then

predicted across various algorithms such as K-mean,

Decision tree, Naive based, SVM, Ada-boost and XGBoost.

By adopting standard metrics such as recall, precision,

accuracy, F1 score which is also called as sensitivity and

specificity to measure how efficient and to check the

performance of our work by running the algorithm on

dataset produce by reputed organizations.

In the next portion, we discuss the remaining works of

our paper as mentioned below. Section II deals with the

bibliography that has been the base papers for the current

work carried out in this paper, Section III emphasizes on

design, methodology and implementation of the proposed

algorithm, Section IV discusses results and analysis that

includes metrics and performance evaluation with a

different algorithm. Finally, the paper is ended by the

conclusion in section V.

II. LITERATURE SURVEY

 Anshul Arora [2] et.al. has developed a detector to detect
malware and benign applications using the rule-based
classifier. Initially, they analyse the features according to the
behaviour of network traffic. Then they distinguish the
features depending on the importance. They build the
classifier and train the traffic. The classifier is used to predict
the traffic as malware or benign. This experiment is only
specific to those malware which is connected to remote
servers in the background.

Westyarian et al. [3] use 205 malware and benign
applications for analysis. They use kernel-level logs such as
API system calls based on permissions for analysis. They
make a correlation comparison that doesn’t affect the
machine learning algorithm for detecting malware. They
classify using SVM, J48 and random forest machine learning
algorithms.

 Vol. 4 (3), September 2020, www.ijirase.com 665

 Mehedee Zaman et al. [4] has provided in detail a method
to detect the malware. They create an application URL table
which has 4 processes that are dumping the packets, logs of
netstat, important features from packet dump and
aggregation of information from packet dump and logs of
netstat. Finally, the table consists of application ID and URL
for which they contact. Then they monitor the applications
which try to contact the malicious domains. They make an
analysis of application behaviour using sys-call trace to build
a model to detect the malware applications.

 Taniya Bhatia [6] et al. has performed a dynamic
analysis. They have collected 50 malicious and malware
applications. Then they use sys-call capture and collect all
the traces of applications. They try to understand the
behaviour of this application by considering the system calls
made by these applications. Decision tree, J48 and random
forest algorithm are used to classify the applications as
malware and benign.

 Satish Kandukuru et al. [7] has built a hybrid model to
classify malware and benign applications. They make a two-
level analysis. First, they extract naïve library, byte code and
XML file from the application. Then they extract metadata
and list of permissions requested by the applications. They
analyse using this permission bit vectors. Secondly, they
make a traffic analysis of TCP and HTTP packets. They use
to try to find out various keywords such as OS details, SIM
serial details and so. These keywords give information about
data leakage. Some features are extracted from this traffic
and analysis is made to classify the application as malware
and benign.

 Anshul Arora and Sateesh [9] have built an NTPDroid
model to detect the malware application. They make both
static and dynamic analysis. Initially, they extract features by
capturing network traffic. Then they extract permissions
from an XML file. The features and permissions are
combined to make combine patterns. Finally, they generate
patterns of both malicious and benign applications, that helps
in defending malware. They classify the application by 3
ways first by using permission alone, second by traffic and
third by combining permission and network traffic.

 According to Pradeep Kumar Tiwari et al. [13], they
collect all the applications. Then each application is
subjected to 3 types of analysis such as pre-static, static and
dynamic analysis for extracting important features. Then the
analysis is monitored in 4 levels, in first they make package
level analysis by monitoring applications meta-data and
manifest files, second, they make user-level monitoring how
the device behaviour changes while interacting with the
users, third they make application-level monitoring to check
if there is any information leakage, frequency of incoming
and outgoing messages, fourth they make kernel-level
monitoring by monitoring system calls and inter-process
communications. They use Dropbox for extracting features
from the traffic. Summarising all these analysis results, then
they are labelled as malware and benign applications.

III. METHODOLOGY

 This section describes the dataset description,
architectural diagram and complete working procedure of the
detector.

A. Dataset Description

The dataset contains the collection of 7500 benign

applications. This collection is a group of 50 android

families. The collection also has 5500 malware applications

of 180 families of malware. The traffic is in pcap files.

Initially, pcap files are preprocessed in Droid Box to capture

traffic for getting network features [5]. The below table

gives the feature description of the dataset.

Table 1: Dataset Feature Description

Features Description

TCP Packets
Total number of TCP packets transmitted and

received via the communication

Distinct Port TCP Total number of packets other than TCP

External IP’s
Number of External IP’s tried to communicate

application

Volume of Bytes
Total Bytes transmitted from application to

external site

UDP Packets
Number of UDP Packets send and received

via a communication

Source Application

Packets

Number of packets transmitted from

application to server

Remote Application

Packets

Number of packets received from the

application to external site

Source Application bytes
Number of bytes transferred between

application and server

Source Application bytes
Number of bytes transferred between server

and external sites

Duration Total time of communication

Local Packet Rate
Average packet rate between application and

server

Remote Packet Rate
Average packet rate between server and

external sites

DNS Query Number of DNS queries

Type Target values benign or malware

B. Architectural Diagram and Working

 We make a dynamic analysis on Android Network
Traffic dataset [5] in our paper. The traffic created by the
applications while executing is captured. Initially, we read
dataset. It contains various features as discussed in the above
section. The target values are either Benign or Malware.
There are 5000 benign rows as the target type and 3500
malware rows as their target type. The architectural diagram
is shown in figure 1. We clean the data by removing the
outliers and Null values. Outliers are the values which lie in
some abnormal position than other values. If we do not
remove these outliers, then it may affect the model during the
time of classification. There are few outliers which are found
during the analysis listed below in figure 2.

 Vol. 4 (3), September 2020, www.ijirase.com 666

Figure 1: Flowchart of the Working Process

(i)

(ii)

Figure 2: Outliers in (i) TCP Packets (ii) Distinct port TCP (iii) Remote

Application Packets

 We can observe in figure 2 of (i) where the values in

TCP packets are abnormal the values are quite continuous

till 15000 then on it suddenly moves to 25000 and then to

37000. Where the values are in abnormal positions. Till

15000 the values are normal then on there is a sudden

change. Hence, we choose the data with TCP packet value

less than or equal to 15000. Similarly, in distinct port TCP
values, less than 1500 and Remote application packets less

than 15000 values are normal values others are at an

abnormal place. Before removing outliers, we remove the

columns which are filled with null values.

 Once all the null and abnormal values are removed, we

standardize the data using the robust scalar technique. The

use of robust scalar is reducing the effect caused by the

outliers. Robust scalar removes the median from the feature

vector and scale the data according to the range between 1st

and 3rd quartile according to the formula listed below.

After standardizing the values, we separate the data into two

parts training and testing. The separation is done in 70-30

pattern i.e. 70% for training and 30% for testing. Then we

train these data to various models/algorithms and predict the

malware and benign applications. The results of these

models are discussed in the next section

IV. RESULTS AND ANALYSIS

A. Metrics

As discussed in the previous section the performance of the
algorithm is measured by standard metrics figure 3 using
standardized formulas such as Precision, Recall, Accuracy,
F1 Score are applied [1] part of specificity and sensitivity
along with analysis [10]. The above metrics are calculated
based on the following outcomes.

Figure 3: Confusion Metrics

Scaled value

 Vol. 4 (3), September 2020, www.ijirase.com 667

1. True Positive (TP), when occurrence and
classification both are benign.

2. False Negative (FN), when occurrence being

positive i.e. benign, but the classification is

malware.
3. True Negative (TN), when occurrence and

classification both are malware.

4. False Positive (FP), when occurrence being
negative i.e. malware but the classification is
benign.

5. Recall, the proportion of correctly classified
positive occurrences from positive cases.

6. Precision, the proportion of correctly classified

positive occurrences from cases that are predicted

as positive.

7. Accuracy is the proportion of correct classifications

by a total number of cases.

B. Results and Discussion of Analysis

Ensemble models are based on a machine learning approach

they combine all the decisions made by multiple models to

improve the overall performance. This can be done using

advance techniques such as Bagging, Stacking and

Boosting. Stacking makes a prediction using multiple

models to form a new model. Bagging creates subsets of

observation with replacement from the data. The subset
must be less than the original sets. Boosting is a sequential

process to correct the errors made by the previous model.

XGBoost algorithm is an advancement of Gradient Boost

algorithm. XGBoost algorithm is based on Bagging and

Boosting ensemble techniques. When we apply XGBoost

model on our dataset we get the following results as shown

in figure 4.

Figure 4: Result of XGBoost model

We have applied our dataset with various algorithms such as

Random Forest, Naive Based, K-neighbors, XGBoost,

AdaBoost and SVM with custom kernels linear regression,

polynomial, sigmoid and radial bias function. The accuracy

with these models is shown below in figure 5. By seeing the

figure, we may say that XGBoost model is providing the
best accuracy rather than other models and it is the best fit

for this dataset. Kappa coefficient is used to check the inter

and intra-reliability of the experiment, which should value

around 0.8-1 for best fit. And XGBoost algorithm Kappa co-

efficient is around 0.83 which has good reliability on the

experiment.

Figure 5:Accuracy of Various Models

V. CONCLUSION

 In this paper, we initially discuss the malware

applications in android and its effects. Then we explore

various base papers and their implementation to classify

malware and benign. Next, we analyze android network
traffic dataset and discuss the methodology. Finally, we

discuss the results. We have used various models to predict

using our dataset. But XGBoost is giving better performance

with the accuracy of 92.28% rather than other models and it

is the best fit for our dataset. The XGBoost is tested across

various metrics and has provided promising results.

REFERENCES

[1] Powers, David Martin. "Evaluation: from precision, recall and

F-measure to ROC, informedness, markedness and
correlation." (2011).

[2] Arora, Anshul, Shree Garg, and Sateesh K. Peddoju.
"Malware detection using network traffic analysis in android
based mobile devices." In 2014 Eighth International
Conference on Next Generation Mobile Apps, Services and
Technologies, pp. 66-71. IEEE, 2014.

[3] Rosmansyah, Yusep, and Budiman Dabarsyah. "Malware
detection on android smartphones using API class and
machine learning." In 2015 International Conference on
Electrical Engineering and Informatics (ICEEI), pp. 294-297.
IEEE, 2015.

[4] Zaman, Mehedee, Tazrian Siddiqui, Mohammad Rakib Amin,
and Md Shohrab Hossain. "Malware detection in Android by
network traffic analysis." In 2015 international conference on
networking systems and security (NSysS), pp. 1-5. IEEE,
2015.

 Vol. 4 (3), September 2020, www.ijirase.com 668

[5] Cao, Dong, Shanshan Wang, Qun Li, Zhenxiang Cheny,
Qiben Yan, Lizhi Peng, and Bo Yang. "Droidcollector: A high
performance framework for high quality android traffic
collection." In 2016 IEEE Trustcom/BigDataSE/ISPA, pp.
1753-1758. IEEE, 2016.

[6] Bhatia, Taniya, and Rishabh Kaushal. "Malware detection in
android based on dynamic analysis." In 2017 International
Conference on Cyber Security And Protection Of Digital
Services (Cyber Security), pp. 1-6. IEEE, 2017.

[7] Kandukuru, Satish, and R. M. Sharma. "Android malicious
application detection using permission vector and network
traffic analysis." In 2017 2nd International Conference for
Convergence in Technology (I2CT), pp. 1126-1132. IEEE,
2017.

[8] Pang, Ying, Zhenxiang Chen, Xiaomei Li, Shanshan Wang,
Chuan Zhao, Lin Wang, Ke Ji, and Zicong Li. "Finding
Android malware trace from highly imbalanced network
traffic." In 2017 IEEE International Conference on
Computational Science and Engineering (CSE) and IEEE
International Conference on Embedded and Ubiquitous
Computing (EUC), vol. 1, pp. 588-595. IEEE, 2017.

[9] Arora, Anshul, and Sateesh K. Peddoju. "NTPDroid: a hybrid
android malware detector using network traffic and system
permissions." In 2018 17th IEEE International Conference
On Trust, Security And Privacy In Computing And
Communications/12th IEEE International Conference On Big
Data Science And Engineering (TrustCom/BigDataSE), pp.
808-813. IEEE, 2018.

[10] Murtaz, Muhammad, Hassan Azwar, Syed Baqir Ali, and
Saad Rehman. "A framework for Android Malware detection
and classification." In 2018 IEEE 5th International
Conference on Engineering Technologies and Applied
Sciences (ICETAS), pp. 1-5. IEEE, 2018.

[11] Taheri, Laya, Andi Fitriah Abdul Kadir, and Arash Habibi
Lashkari. "Extensible android malware detection and family
classification using network-flows and api-calls." In 2019
International Carnahan Conference on Security Technology
(ICCST), pp. 1-8. IEEE, 2019.

[12] Sabhadiya, Sagar, Jaydeep Barad, and Jaydeep Gheewala.
"Android Malware Detection using Deep Learning." In 2019
3rd International Conference on Trends in Electronics and
Informatics (ICOEI), pp. 1254-1260. IEEE, 2019.

[13] Tiwari, Pradeep Kumar, and T. Velayutham. "Automated
Ensembling of Features from Android Applications for
Malware Detection." In 2019 International Conference on
Cutting-edge Technologies in Engineering (ICon-CuTE), pp.
4-8. IEEE, 2019.

gfhyhh

hhh
hhh

hhh
hhh

hhh
hhh

hhh
hhh

hhh
hhh

hhh
hhh

hhh
hhh

hhh
hhh

hhh
hhh

hhh
hhh

hhh
hhh

hhhhhh
gfhyhhh

hhh
hhh

hhh
hhh

hhh
hhh

hhh
hhh

hhh
hhh

hhh
hhh

hhh
hhh

hhh
hhh

hhh
hhh

hhh
hhh

hhh
hhh

hhhhhhhhhhh

